Step of Proof: decidable__equal_int_seg
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
decidable
equal
int
seg
:
i
,
j
:
,
x
,
y
:{
i
..
j
}. Dec(
x
=
y
)
latex
by ((((Unfold `decidable` 0)
CollapseTHEN (RepD))
)
CollapseTHENA ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
i
:
C1:
2.
j
:
C1:
3.
x
: {
i
..
j
}
C1:
4.
y
: {
i
..
j
}
C1:
(
x
=
y
)
(
(
x
=
y
))
C
.
Definitions
t
T
,
Dec(
P
)
,
x
:
A
.
B
(
x
)
Lemmas
int
seg
wf
origin